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Abstract— Motion capture systems are used to gauge the
kinematic features of the motion in numerous fields of research.
Despite superb accuracy performance, the commercial systems
are costly and difficult to use. To solve these issues, Kinect
has been proposed as a low-priced markerless motion capture
sensor, and its accuracy has been assessed using previous
motion capture systems. However, in many of these studies, the
anatomical joint angles captured using the Kinect are compared
to the 3D rotation angles reported by the gold standard motion
capture systems. These incompatibilities in the determination
of the human joint angles can lead to higher error estimation.
To accomplish a valid accuracy evaluation of the Kinect, we
applied the inverse kinematics techniques in both Vicon and
Kinect version 2 skeleton models to estimate lower body joint
angles. The proposed method enabled us to capture the pelvic,
hip, and knee joint angles using a single Kinect camera during
gait. Moreover, the dependency of the proposed method to the
position of the Kinect and the speed of the moving subject
was investigated. In this study, the captured data of the Vicon
motion capture system were used as ground-truth to assess
the accuracy of the Kinect data. The results indicate the
capability of Kinect in capturing human joint angles and also
an affordable motion capture system applied in robotics and
biomechanics applications.

I. INTRODUCTION

Motion capture systems are utilized to reconstruct and

transfer human motions into a robot. Many researchers

have employed human motions in robot imitation learning

and human-like motion generation [1][2][3]. For a better

mimicry, human and humanoid walking patterns are com-

pared to apply the human walking functions to the humanoid

robots [4][5]. Despite high accuracy, commercial motion

capture systems are costly and complicated to use. Since

several cameras are required to capture one motion, the

data collecting is restricted to special settings and con-

ditions. For instance, performing multi-camera calibration

is essential before each experiment. Additionally, due to

the mentioned conditions, commercial systems are mainly

used in indoor environments. Markerless motion capture

systems were proposed to overcome the previous issues

[6]. These motion analysis technologies enabled researchers
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Fig. 1. Human motion tracking using Kinect v2. The Kinect accuracy is
assessed using the Vicon motion capture system as the gold standard. The
Kinect world coordinate is located on its IR camera, and the Vicon world
coordinate is set on the floor. The plug-in-gait marker set is only used in
the Vicon system in order to capture the human motion.

to evaluate movement characteristics as more cost-effective

and straightforward. Despite the benefits of these new sys-

tems, systematic limitations restrain their functionality. For

instance, wearable electromagnetic sensors are affected by

gravity noise and signal drift [7]. Furthermore, these sensors

are still costly and require a skillful data analyzer to post-

process the data.

Microsoft released Kinect version 1 (Kinect v1) as an

accessory for the Xbox 360 video game platform in 2010.

It was designed for the gaming purposes, but it can also

be utilized as a markerless, affordable, and portable motion

capture sensor. The Kinect v1 consists of one IR emitter,

one IR camera, and one RGB camera which acquire depth

and color images of the scene. Consequently, The Depth of

the scene is measured using speckle pattern technology. In

2014, Microsoft released the second version of the Kinect

(Kinect v2) with enhanced RGB and IR camera resolution

and wider field of view (see Fig. 1). Microsoft used a

different technology called time-of-flight (TOF) in Kinect

v2 in order to measure the depth of the scene [8]. The

TOF technology assisted the use of the Kinect v2 in outdoor



As it is illustrated in Fig. 6, the Kinect data is noisy and

unstable, which becomes more important in the forward

dynamic simulation, where the second order differential of

the joint trajectories are required. The results affirm more

research is required to overcome the instability of the Kinect

data to validate this sensor in robot control tasks.
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